Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 227: 113327, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37172419

RESUMO

Mucus reduces friction between epithelial surfaces by providing lubrication in the boundary and mixed regime. Mucins, the main macromolecule, are heavily glycosylated proteins that polymerise and retain water molecules, resulting in a hydrated biogel. It is assumed that positively charged ions can influence mucin film structure by screening the electrostatic repulsions between the negatively charged glycans on mucin moieties and draw in water molecules via hydration shells. The ionic concentration can vary significantly in different mucus systems and here we show that increasing the ionic concentration in mucin films leads to an increase in lubrication between two polydimethylsiloxane surfaces at sliding contact in a compliant oral mimic. Mucins were found to bind sodium ions in a concentration-dependent manner and increased ionic concentration appears to cause mucin films to swell when assessed by Quartz Crystal hiMicrobalance with Dissipation (QCM-D) analysis. Furthermore, we determined that the removal of negatively charged sialic acid moieties by sialidase digestion resulted in reduced adsorption to hydrophilic surfaces but did not affect the swelling of mucin films with increasing ionic concentrations. Moreover, the coefficient of friction was increased with sialic acid removal, but lubrication was still increased with increasing ionic concentrations. Taken together this suggests that sialic acids are important for lubrication and may exert this through the sacrificial layer mechanism. Ionic concentration appears to influence mucin films and their lubrication, and sialic acids, at least partly, may be important for ion binding.


Assuntos
Mucinas , Ácidos Siálicos , Mucinas/química , Lubrificação , Ácido N-Acetilneuramínico , Água/química
2.
ACS Appl Mater Interfaces ; 14(13): 15818-15829, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35333041

RESUMO

Friction continues to account for the bulk of energy losses in mechanical systems, with an estimated 23% of the world's total energy consumption used to overcome friction. Concentrated polymer brushes (CPBs) have recently attracted significant scientific and industrial attention, given their ability to achieve superlubricity (i.e., coefficients of friction below 0.01); however, understanding the mechanistic interactions underlying their wear performance has been largely overlooked. Herein, we employ a custom-built optical test apparatus to investigate the inter-dependencies between CPBs and laser-produced surface texture (LST), assessing for the first time the friction, film thickness, and wear behavior in situ and simultaneously. Recent developments in picosecond laser etching allowed us to graft CPBs atop the finest laser-etched matrix of micron-sized dimples reported in literature to date. At low sliding speeds, combined CPB-LST reduces the coefficient of friction to 0.0006, while increasing the CPB durability by up to 34% through a lateral support mechanism offered by the textured micro-features. Furthermore, the imaging results shed light on CPB failure mechanisms. Both these mechanisms of lateral support and failure propagation impact the wear resistance of CPBs and are important in the development of CPBs for future applications (e.g., in low-speed bearings functioning under controlled abrasive wear conditions).

3.
J Colloid Interface Sci ; 586: 142-151, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33162047

RESUMO

The perception of carbonation is an important factor in beverage consumption which must be understood in order to develop healthier products. Herein, we study the effects of carbonated water on oral lubrication mechanisms involved in beverage mouthfeel and hence taste perception. Friction was measured in a compliant PDMS-glass contact simulating the tongue-palate interface (under representative speeds and loads), while fluorescence microscopy was used to visualise both the flow of liquid and oral mucosal pellicle coverage. When carbonated water is entrained into the contact, CO2 cavities form at the inlet, which limit flow and thus reduce the hydrodynamic pressure. Under mixed lubrication conditions, when the fluid film thickness is comparable to the surface roughness, this pressure reduction results in significant increases in friction (>300% greater than under non-carbonated water conditions). Carbonated water is also shown to be more effective than non-carbonated water at debonding the highly lubricious, oral mucosal pellicle, which again results in a significant increase in friction. Both these transient mechanisms of starvation and salivary pellicle removal will modulate the flow of tastants to taste buds and are suggested to be important in the experience of taste and refreshment. For example this may be one reason why flat colas taste sweeter.


Assuntos
Bebidas , Paladar , Carbonatos , Fricção , Lubrificação
4.
Sci Adv ; 6(32): eaba9721, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32923610

RESUMO

Artificial liquid-repellent surfaces have attracted substantial scientific and industrial attention with a focus on creating functional topological features; however, the role of the underlying structures has been overlooked. Recent developments in micro-nanofabrication allow us now to construct a skin-muscle type system combining interfacial liquid repellence atop a mechanically functional structure. Specifically, we design surfaces comprising bioinspired, mushroom-like repelling heads and spring-like flexible supports, which are realized by three-dimensional direct laser lithography. The flexible supports elevate liquid repellency by resisting droplet impalement and reducing contact time. This, previously unknown, use of spring-like flexible supports to enhance liquid repellency provides an excellent level of control over droplet manipulation. Moreover, this extends repellent microstructure research from statics to dynamics and is envisioned to yield functionalities and possibilities by linking functional surfaces and mechanical metamaterials.

5.
ACS Appl Mater Interfaces ; 12(3): 4174-4182, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31889435

RESUMO

Artificial liquid-repellent surfaces have recently attracted vast scientific attention; however, achieving mechanical robustness remains a formidable challenge before industrialization can be realized. To this end, inspired by plateaus in geological landscapes, a self-compensating strategy is developed to pave the way for the synthesis of durable repellent surfaces. This self-compensating surface comprises tall hydrophobic structural elements, which can repel liquid droplets. When these elements are damaged, they expose shorter structural elements that also suspend the droplets and thus preserve interfacial repellency. An example of this plateau-inspired stratified surface was created by three-dimensional (3D) direct laser lithography micro-nano fabrication. Even after being subjected to serious frictional damage, it maintained static repellency to water with a contact angle above 147° and was simultaneously able to endure high pressures arising from droplet impacts. Extending the scope of nature-inspired functional surfaces from conventional biomimetics to geological landscapes, this work demonstrates that the plateau-inspired self-compensating strategy can provide an unprecedented level of robustness in terms of sustained liquid repellency.

6.
Langmuir ; 35(17): 5967-5974, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30945864

RESUMO

Wetting mechanisms on rough surfaces were understood from either a monolayer or a multiscale perspective. However, it has recently been shown that the bi-Gaussian stratified nature of real surfaces should be accounted for when modeling mechanisms of lubrication, sealing, contact, friction, acoustic emission, and manufacture. In this work, a model combining Wenzel and Cassie theories was put forward to predict the static contact angle of a droplet on a bi-Gaussian stratified surface. The model was initially applied to numerically simulated surfaces and subsequently demonstrated on hydrophilic steel and hydrophobic self-assembled monolayer specimens with preset bi-Gaussian stratified topographies. In the Wenzel state, both the upper and the lower surface components are fully wetted. In the Cassie state, the upper component is still completely wetted, while the lower component serves as gas traps and reservoirs. By this model, wetting evolution was assessed, and the existence of different wetting states and potential state transitions was predicted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...